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1. Introduction

Philosophers of science distinguish between two forms of discovery - the generation of
empirical laws and the formation of theories (Thagard, 1988). The first activity involves
descriptive generalizations that summarize observations such as Ohm's law and the ideal gas
law. The second concerns the explanation of phenomena, which often involves postulating
unobserved structures or processes. Examples of scientific theories include the fluid model
of electricity and the kinetic theory of gases. Of course, science also involves many other
components, including the design of experiments and measuring instruments, but it is often
useful to focus one's attention on a limited set of phenomena. In this paper, we focus on the
discovery of empirical laws.

In recent years, researchers in machine learning have investigated three main aspects
of empirical discovery. The first relates to the process of taxonomy formation. Before one
can formulate laws, one must first establish the basic concepts or categories that one hopes
to relate. For instance, one might group certain substances together as acids, alkalis, or
salts depending on their tastes. Research on conceptual clustering (Michalski & Stepp, 1983;
Lebowitz, 1987; Fisher, 1987) addrezses this problem, even though it has seldom been cast
as relevant to scientific discovery. This task involves organizing a set of observations into
a conceptual hierarchy, which can then be used to classify new observations. Fisher and
Langley (1985) review work on conceptual clustering and its relations to statistics, whereas
Gennari, Langley, and Fisher (in press) examine incremental clustering methods.

Another facet of empirical discovery concerns the generation of qualitative laws. In this
case, the goal is to uncover qualitative relations that hold across a set of observations. Thus,
one might note that acids tend to react with alkalis, and that the result is always some salt.
Researchers who have addressed this problem include Brown (1973), Lenat (1977), Emde,
Habel, and Rollinger (1983), Langley, Zytkow, Simon, and Bradshaw (1986), Jones (1986),
and Wrobel (1988).

Finally, empirical discovery can involve the production of quantitative laws. Here the

goal is to find mathematical relations betwcen numeric variables. For instance, one might
determine the amount of hydrochloric acid that combines with a unit amount of sodium
hydroxide, and also note the amount of sodium chloride that results from this reaction.
Researchers have developed a number of Al systems that have rediscovered a variety of
numeric laws from physics and chemistry (Langley, Simon, Bradshaw, & Zytkow, 1987;
Falkenhainer & Michalski, 1986; Kukar, 1986; Zytkow, 1987). In some cases, these systems
find not only quantitative relations but also qualitative conditions on the laws.

Although each of these systems is successful at its specific task, no system to date has
attempted to integrate these different aspects of science. The goal of our research is to
develop a framework that unifies all three components of empirical discovery. To this end,
we have developed IDS, an integrated discovery system that incorporates mechanisms for

taxonomy formation, qualitative discovery, and numeric discovery. In the following pages
we describe the IDS system in detail. The next section describes the representation and

organization of knowledge, and Section 3 presents the main discovery components and their
relation to each other. Both sections contain examples to clarify the system's structures and
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processes. We close the chapter by describing the status of IDS, along with our plans for
evaluating and extending the system.

2. Representation and Organization in IDS

IDS' representation draws upon recent work in qualitative physics, describing its obser-
vations as sequences of qualitative states. The system also uses this notation in stating its
taxonomy and laws, which require some organization of memory. On this dimension, IDS
borrows from recent work on incremental approaches to conceptual clustering. In this sec-
tion, we give the details of representation and organization, first dealing with IDS' inputs
and then with its outputs.

2.1 Inputs to IDS

Every discovery system starts with some background knowledge, whether this bli& is
made explicit or not. In IDS. this takes the form of a simple domain theory that describes
classes of objects the system may encounter. This knowledge is represented as an is-a
hierarchy, similar to what Michalski (1983) calls a 'structured descriptor' and what Mitchell,
Utgoff and Banerji (1983) call a 'concept description grammar'. Figure I presents an example
of such a hierarchy for certain of chemical substances. Although this example involves a
disjoint hierarchy, the system can also handle nondisjoint structures in which nodes can
have multiple parents. For instance, one might know that the substance HCI comes in two
different colors, either green or blue.

SUBSTANCE

PHASEPHS ACID ALKALI SALT

//

GAS LIQUID SOLID HNO3 HCI NaOH KOH KCI NaNO3 NaCI KNO3

Figure 1. A simple domain theory for chemical substances.

An empirical discovery system also requires some data or observations on which to base
its generalizations. In IDS, this information is represented as histories (Hayes, 1979), which
are sequences of qualitative states that the system observes in an incremental fashion. Each
'state' represents an interval of time during which objects exhibit 'constant' behavior; this
representation borrows heavily from Forbus' (1985) qualitative process theory.

Figure 2 shows the history for a simple chemical reaction with three distinct qualitative
states. The initial state contains two separate objects, liquid HCl and liquid NaOH. When
these substances ice combined by an external agent, a new state begins that contains three
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objects - the two original reactants and a new product.' During this state, the masses of
the reactants are decreasing, whereas the mass of product is increasing. This is a form of
constant behavior, since the signs of the derivatives remain unchanged.

MASS(C)=O

MASS(D)=8.72

COMBINE(AB)_ MASS(E=16.S

LIQUID(A), HCL(A) LIQUID(C), HCL(C) LIQUID(F), NAOH(F)
LIQUID(B), NAOH(B) LIQUID(D), NAOH(D) LIQUID(G), NACL(G)

MASS(A)=10 LIQUID(E), NACL(E) MASS(F)=8.72
MASS(B)=12 / MASS(C) < 0 MASS(G)=16.50

A MASS(D) < 0
/ MASS(E) > 0

Figure 2. The sequence of qualitative states observed during a chemical reaction.

A qualitative state ends and a new one begins whenever the sign of any derivative
changes; i.e., when any increase or decrease of a variable starts or stops. 2  A boundary
between states also results when any structural change takes place. Both occur in Figure
2 when the mass of the HCl in State 2 reaches zero, for at this point one of the reactants
disappears and the mass changes halt in the remaining objects. As a result, the history
enters a new state in which these two objects are in contact but in which their masses
remain constant. Although IDS is given these boundaries, one can imagine a system that
found them on its own (Kuipers, 1985; Weld, 1986).

IDS represents each qualitative state as a frame with four slots. The object description
slot describes the objects present in the state using the domain theory for objects. For
example, object C in Figure 2 is described as liquid(C), HCI(C). A state also includes a
structural description, such as touches(C, D). The changes slot contains a list of zero or
more changes occurring in the state. As in Forbus' theory, we express changes in terms of
derivatives. For instance, a decrease in the mass of C is expressed as A mass(C) < 0. Finally,
the quantity slot describes numerical attributes that remain constant during a state.

Histories are inherently sequential, and IDS represents the successor of a given state
using a successor link. These links can be labeled by a transition condition, which identifies
the condition under which the current state ends and its successor begins. These transition
conditions may involve either quantitative descriptions, such as mass(B) = 12, or the actions
of an external agent, such as combine(A, B). For instance, the melting and boiling points of
a substance are commonplace transition conditions.

IDS processes qualitative states one at a time, in the order they occur in a historical
sequence. The system also receives the information on the temporal order of these states.

1 We have omitted the second product, liquid H20, for the sake of simplicity. Also, note that
the objects are labeled by pattern-match variables that are different from state to state.
2 These state boundaries correspond to limit points in Forbus' qualitative process theory.
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For example, it would first be given the initial state in Figure 2. After processing is complete,
IDS is then presented with the second state along with the fact that this state is the successor
of State 1. The third state is then given in the same fashion, with the information that it is
the final state in the history. The system is next presented with the first state of the next
history, and so on. As we will see, IDS uses these states and the temporal relations between
them to incrementally form a hierarchy of qualitative states and to discover empirical laws.

2.2 Outputs of IDS

The incremental nature of IDS means the system has no explicit outputs, since it contin-
ues processing states as long as they are available. However, the system produces a knowledge
structure after each experience, and one can view these structures as its 'output'. We will
focus on three aspects of this output - the taxonomy, ,ualitative laws, and numeric laws.

IDS organizes the qualitative states it observes into a taxonomic hierarchy, with specific
states as terminal nodes and with abstract states as internal nodes. This hierarchy takes the
form of a tree, so that no specific -rate can belong to more than one abstract category. IDS
does not make a distinction between instances and abstract states, thus the abstractions have
the same slots as particular states (i.e., a description of the structure, the objects involved,
the changes occurring during the state. and the constant quantities). The structure of the IDS
hierarchy is similar in form to thos;e generated by UNIMEM (Lebowitz, 1987) and COBWEB
(Fisher, 1987), though these systems do not cluster qualitaive states.

Figure 3 presents a top-level taxonomy that summarizes qualitative states involving
various acids, alkalis, and salts, with solid lines standing for is-a links. For example, Node 4
describes cases in which a liquid alkali and a liquid salt are in contact with each other, whereas
Node .5 specifies cases in which acidic and salty liquids occur. Node 3 is an abstraction of
these cases in which the second substance is not specified. No changes are occuring in any
of these three states, though changes are present in Node 2.

The IDS taxonomy connects states at varying levels of abstraction through is-a links, but
histories also contain temporal information. Thus, the system also specifies successor links
between nodes, indicating that one class of qualitative states follows another in time. Figure
3 also shows examples of successor links, using dashed arrows to indicate these temporal
connections. For example, the link between Nodes 1 and 2 specifies that instances of Node 2
occur directly after instances of Node 1. Note that a given node may have several successors,
some at differeit levels of abstraction.

Successor links may also specify the conditions under which the transition occurs. For
instance, the label on the link between Nodes 1 and 2 - combine(A, B) - indicates that this
transition occurs when the two objects in Node 1 are physically combined. Taken together,
nodes and successor links represent qualitative laws similar in content to those found by
GLAUBER (Langley et al., 1987). Thus, Node 1, Node 2. and the link between them asserts
that when a liquid acid is combined with a liquid alkali, the two substances react to form
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LIQUID(A), ACID(A) LIQUID(F), SALT(F)
LIQUID(B), ALKALI(B) LIQUID(G). SUBSTANCE(G)

,AQUID(C),UACID(C

LIQUID(D). ALKALI(D)
LIQUID(E), SALT(E)

AMASS(C) < 0

A MASS(F) > 0

LIQUID(H), SALT(H) LIQUID(K), SALT(K)
LIQUID(1), ALKALI(1) LIQUID(L), ACID(L)

Figure 3. A taxonomy for acids, alkalis, and salts, augmented with successor links and
transition conditions.

a salty liquid. This can be viewed as a restatement of the qualitative law 'acids react with
alkalis to form salts'. 3

Figure 4 shows the third aspect of IDS' output - the augmentation of nodes and successor
links with numeric laws. One type of law describes the conditions for transitions between
states. For instance, the successor link between Node 2 and Node 3 in this figure indicates
that when the mass of the liquid HCl reaches zero, the reaction state (Node 2) ends and the
final state (Node 3) begins. Nonzero values, such as the boiling point for a substance, may
be stored as well. IDS also stores numeric laws with individual states that relate attributes
within that state; the ideal gas law is one example of such a relationship.

In addition, the system forms numeric lows that relate attributes in different states in
the same sequence. It stores these laws on quantity relation links that connect the states
containing the related attributes. Figure 4 shows an example of such a cross-state law. This
relation specifies that liquid HC1 reacts with liquid NaOll in constant proportion to form
liquid NaCl. The mass of the resulting NaCl is 1.64 times the initial mass of the HCl; this
corresponds to the chemical concept of the definite proportions of the reaction.

The numeric laws generated by IDS are similar to those found by BACON (Langley,
Bradshaw, & Simon, 1983), ABACUS (Falkenhainer & Michalski, 1986), and FAHRENHEIT

a We will not argue that this approach can represent all forms of qualitative laws, but we do feel
that temporal relations among abstract qualitative states constitute an important subset of such

laws.
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is-a link

temporal link

quantity relations
link

MASS(G) = 1.64 MASS(A)

1 2 3

0 COMBINE(A.B) MASS(C)=0_

-Ii --

LIQUID(A). HCL(A) LIQUID(C), HCL(C) LIQUID(F), NAOH(F)

LIQUID(B). NaOH(B) LIQUID(D), NAOH(D) LIQUID(G), NACL(G)

LIQUID(E), NACL(E)

A MASS(C) < 0
MASS(D) < 0

MASS(E) > 0

Figure 4. A numeric law relating attributes across states.

(Zytkow. 1987), but there is an important difference. These earlier systems found numeric
laws and conditions for them, but their statement of the laws contained no information about
the structural or physical context in which they occurred. Even as simple a relation as the
ideal gas law actually involves a set of structurally-related objects that change over time.
This is precisely the function of the taxonomy of qualitative states and the successor links
in IDS. Unlike earlier approaches to numeric discovery, IDS describes a qualitative context
for its quantitative laws.

3. Discovery and Prediction in IDS

Now that we have discussed IDS in terms of its inputs and outputs, we can present
the mechanisms it uses for empirical discovery. Like much of the recent work in machine
learning, the system can be characterized as using an incremental hill-climbing approach
(Langley, Gennari, & Iba, 1987). Such systems process one instance at a time and do not
reprocess substantial numbers of previous instances. Furthermore, these systems hold only
one structure in memory and retain no information about their learning steps, so explicit
backtracking cannot occur. Following this general strategy, IDS pro.,,sses one qualitative
state at a time, sorting the state through its current taxonomy, incorporating it into the
hierarchy, and creating new nodes as needed. When a new node is created, IDS determines
the successor of that nodp. If a new child does not obey a numeric law of its parent node.
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Table 1

The IDS clustering algorithm

Variables: 7. P, auld Q are nodes in the hierarchy.
I is an instance (a very specific node).
X is a distance score between two nodes.

cluster(N, I)

For each child C of N
compute the distance score between C and I.

Let P be the node with the highest score.
Let X be the score for placing I as a descendant of P.
If X is sufficiently high,

Then if P does not cover I,
Then generalize P to cover I.

Cluster(P, I).
Else add I as a child of N.

Merge-children(N, I).
Note:

The distance measure is lexicographic, using states' slots
to calculate the similarity between two states.

The domain theory is used to generalize and merge states.

the system formulates an improved law. This cycle continues as long as the system receives
new observations.

3.1 Forming a Taxonomic Hierarchy

Table 1 summarizes the IDS clustering algorithm, which has been heavily influenced
by Lebowitz's (1987) work on UNIMEM and Fisher's (1987) work on COBWEB. When IDS
receives a new qualitative state, it sorts this state through its hierarchy. Starting at the root
node, the system computes the difference between the instance and each child of the current
node. IDS measures these differences using a lexicographical evaluation function (Michalski,
1986). The total value of this function is computed from scores of similarity between the
slots of the two states. 4

The system then sorts the instance to the child that matched it most closely. If the
match is sufficiently high (i.e., if the score is above a user-specified threshold), the selected
child becomes the current node, and the sorting continues recursively. If the match with the
selected child is high enough but that child does not cover the instance, the child is generalized
so it covers the instance completely. If the match is not high enough, the instance is added
as a new child of the current node.

Let us consider another example from the domain of alkalis and acids. Figure 5 shows
a portion of an IDS taxonomy that describes the final states in a reaction sequence, after

4 The structural description is treated as most important, followed by the description of changes,
thpn by the object descriptions, and finally the descriptions of numeric attributes.
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one of the initial substances has been completely used. The system receives a new instance
(labeled 4 in the figure), which it sorts to Node 1. At this point, IDS computes the distance
between the instance and the children of Node 1. In this case, Node 3 matches the instance
more closely than Node 2. However, the score for placing the instance as a descendent of
Node 3 is not above threshold, so the algorithm adds the instance as a new child of Node 1,
as seen in Figure 6.

new instance

4
LIQUID(G), HNO3(G)

W LIQUID(H) KOH(H)

1MASS(G)=3
J MASS(H)=10

LIQUID(A). 

ACID(A)

LIQUID(B), ALKALI(B

2 3
LIQUID(E). HNO3(E)

LIQUID(C). HCI(C) LIQUID(F), NaOH(F)

LIQUID(D). ALKALI(D) @jj @?J MASS(E)=3

MASS(F)=12

Figure 5. A taxonomy before incorporation of a new qualitative state.

As we noted earlier, IDS identifies the objects in each state using state-specific variables.
In order to determine the best match between two states, the matcher generates all possible
bindings between the variables in the two states. Using the evaluation function, the matcher
then calculates a similarity score between the two states for each set of bindings and selects
the one with the highest score. For example, there are two possible sets of bindings for the
variables between Nodes 4 and 3 in Figure 7: {(G, E) (H, F)} and {(G, F) (H, E)}. Because
the first binding set receives a higher score, the matcher concludes that G and H of Node 4
correspond to E and F of Node 3, respectively.

Whenever IDS adds a new instance as the child for a node in the hierarchy, it considers
two ways to merge the node's children. First the system finds the two siblings that match
the new child most closely. It then considers merging the new child with its closest sibling,
as well as merging these two siblings. 5  IDS corm.putes a score for each option using its
evaluation function and merges the pair that produces the higher score, creating a merged
(generalized) node that subsumes the pair. The system then stores the siblings as children

.5 For an optimal solution, the system would have to consider merging all possible pairs. However,
informal experiments have shown that considering these two cases generally produces the desired
results.
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LIQUID(A), ACID(A)
LIQUID(B). ALKALI(B) A8

LIQUID(C), HCI(C) 2 Z "LIQUID(E), HNO3(E)
LIQUID(D). ALKALI(D) ®® LIQUID(F). NaOH(F)

U A LMASS(E)=3
MASS(F)=12

LIQUID(G), HNO3(G)
LIQUID(H), KOH(H)

MASS(G)=3
MASS(H)=1O

Figure 6. A taxonomy before two children have been merged.

of the merged node, which in turn is stored as a child of the original parent node. Merges of
two nodes that result in a node identical to the original parent are not executed.

In our example, Node 4 (the new child) has only two siblings. Thus, the system considers
two actions: merging Nodes 2 and 3, and merging Nodes 4 and 3. The second option receives
the higher score, and since merging the two nodes does not produce a node that is identical
to Node 1, the merge is carried out. The merged node (Node 5) is added as a child of Node 1,
and Nodes 4 and 3 are added as children of Node 5. Figure 7 shows the modified taxonomy
after merging has occurred, and Table 2 presents the algorithm for merging children.

The process for creating a generalized node is straightforward. IDS uses the matcher to
find a correspondence between the variables in the merging nodes and the variables in the
merged node, which it then uses to fill the slots of the new state. In general, each slot value
in a new node is the intersection of that slot's values in the merging nodes. For example,
given the situaz.on in Figure 7, the matcher determines that variable I of Node 5 corresponds
to G in Node 4 and E in Node 3, and that variable K in Node 5 corresponds to H and F. The
quantity slot of Noe I hag a value of mass(E) = 3, mass(F) = 12, and the quantity slot of
Node 4 has a val,'-e, mass(G) = 3, mass(H) = 10. Using the variable correspondence as a
constraint, the in :tion of these two sets is mass(I)=3, which becomes the value for the
quantity slot in l'TodF- 5.

IDS computk ; tOe ,,oject descriptions of a merged state in a different manner, using the
domain theory tc determine the values of this slot. As described above, for each variable
in the merged node, the matcher determines the corresponding variables in the merging
nodes. The system then collects the components of the object description for each pair of
corresponding variables. Next, IDS determines all closest common ancestors of each pair of
components in the domain theory. These common ancestors become the components of the
new object description for the variable in the merged node.
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LIQUID(A), ACID(A)

LIQUID(B). ALKALI(C

2

LIQUID(C). HCI(C) LIQUID(I), HNO3(I)

LIQUID(D), ALKALI(D) cS(& LIQUID(K). ALKALI(K)
MASS(I)=3

LIQUID(E), HNO3(E)

® LIQUID(F), NaOH(F)

MASS(E)=3
MASS(F)=12

LIQUID(G), HNO3(G)

LIQUID(H), KOH(H)
MASS(G)=3
MASS(H)=10

Figure 7. A taxonomy after two children have been merged.

We can clarify this procedure with an example. Given the situation in Figure 7, the
matcher determines that variable H of Node 3 and F of Node 4 correspond to K in Node 5.
The description components of H are liquid and KOH, whereas the components F are liquid
and NaOH. The closest common ancestor of liquid and liquid (given the domain theory in
Figure 1) is liquid, and the closest common ancestor of KOH and NaOH is alkali. The terms
liquid and KOH have no common ancestor, nor do NaOH and liquid. Hence, the resulting
description components for K are set to liquid and alkali.

As we noted above, IDs' clustering component has been influenced by Lebowitz' (1987)
UNIMEM and Fisher's (1987) COBWEB, but there are some important differences. For in-
stance, IDS and COBWEB form only disjoint taxonomies, in which each node has a single par-
ent. In contrast, UNIMEM can sort an instance down multiple paths, producing a nondisjoint
hierarchy. IDS differs from both earlier systems in that it includes no counts or probabilities
on its features; each description in the taxonomy is categorical. Our system is probably
most akin to COBWEB, though it uses a different evaluation function and lacks the latter's
splitting operator (the inverse of the merge operator).

Lenat's (1982) AM system also organizes its concepts into a hierarchy and dynamically
extends that hierarchy over time. However AM begins its existence with 250 heuristics
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Table 2

The algorithm for merging children

Variables: N, P, Q, and R are nodes in the hierarchy.
A is the newest child.
X and Y are partition scores.

Merge-children(N, I)

For each child C of N except A
Compute the score of closeness between C and A.

Let P be the node with the highest score.
Let R be the node with the second highest score.
Let X be the score of merging A and P.
Let Y be the score of merging P and R.
If X is the best score,

Then let Q be the resulting node of merging P and A.
If Q is not equal to N,

Then place Q as a child of N.
Remove P and A as children of N.
Place P and A as children of Q.

Else if Y is the best score,
Then let Q be the resulting node of merging P and R.

If Q is not equal to N,
Then place Q as a child of N.

Remove P and R as children of N.
Place P and R as children of Q.

and over 100 initial concepts, whereas IDS begins with a simple algorithm, a small domain
theory, and an empty hierarchy. More important, Lenat's system generates new concepts
by 'mutating' the definitions of existing ones and then testing them; we might call this an
exploratory approach to discovery. In contrast, IDS (like UNIMEM and COBWEB) generates
new concepts in direct response to observations, using a data-driven approach to discovery.

3.2 Discovering Qualitative Laws

We have seen that IDS represents qualitative laws in terms of abstract qualitative states
and the successor links connecting them. With the exception of the final state in a history,
every node in the taxonomy must have some successor node. This temporal information
is given as part of the input, and this input specifies the links for terminal nodes in the
hierarchy, but the system must induce the links between abstract nodes.

Whenever IDS forms a new abstract qualitative state (i.e., a nonterminal node in the
hierarchy), it determines the successor for this new node. This is a simple process that
involves finding the closest common ancestor of the successors of the new node's children. 6

6 This requires that all the successors of that node's children have been incorporated into the

state hierarchy. Therefore, finding the closest common ancestor of a node is delayed until the
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For an example, consider the partial taxonomy shown in Figure 8. Node 1 has two children,
which are labeled Nodes 3 and 4. These nodes have the successors Nodes 5 and 6, respectively.
In this case, IDS determines that the closest common ancestor of Nodes 5 and 6 is Node 2,
and it asserts this node as the successor of Node 1.

LIQUID(C), ACID(C)

1 2 LIQUID(D), ALKALI(D)

0A COMBINE(L) LIQUID(E). SALT(E)

LIQUI-(A),ACI(A) /E E MASS(C) < 0

LIQUID(S), ALKALI(S) MASS(D)< 0

0/ MASS() > 0

IUCOMB(INE(,F. G

LIQUID(F), HCI(F) 4LLIQ(ID(H) HCI(H)
LIQUD(G), ALKALI(G) ILIQUID(), ALKALI()

QCOMBINE(L,M) NLIQUID(K). SALT(K)

LIQUID(L), HN03(L) LIQUID(N), HNO3(N)
LIQUID(M), ALKALI(M) LIQUID(O), ALKALI(O)

LIQUID(P), SALT(P)

A MASS(N) < 0
A MASS(O) < 0

A MASS(P) > 0

Figure 8. A qualitative law that results from the merging of two successor links.

In addition, IDS attempts to attach transition conditions to the new successor link,
which may take the form of some external action or some quantity relation. The system
determines these conditions in the same way that it forms merged nodes: by finding the
structure common to the two links. For example, the transition formed between Node 1
and Node 2 is labeled combine(A, B), because this action is stored on the successor link
connecting Nodes 3 and 6, as well as that connecting Nodes 4 and 5. The act of adding

successors of all of its children have been clustered. Every set of nodes has at least one common
ancestor - the root node. However, a successor link from a node to the root node in the hierarchy
does not form a qualitative law with any useful content.
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this condition is equivalent to inducing a law that states 'if a liquid acid is combined with a
liquid alkali, they react to form a liquid salt'.

If IDS finds only some common actions in the children's successor links, it includes only
the shared structure in the abstract link. If it can find no common structure, the system
creates the successor link but specifies no transition conditions. In other cases, the conditions
on the specific links involve numeric relations, such as reaching zero mass or achieving boiling
point. In this situation, IDS attempts to find a numeric relation that covers the specific cases,
using the algorithm described in t',e next section.

As we noted earlier, IDS formulates qualitative laws with similar content to those found
by Langley et al.'s (1986) GLAUBER. However, the two systems arrive at these laws in very
different manners. As we saw in the acid/alkali example, qualitative discovery in IDS is a
simple process of finding two nodes' closest common ancestor. In contrast, GLAUBER spent
considerable effort in finding classes of objects with common attribute values and playing
similar roles.

3.3 Finding Numeric Laws

The third major component of IDS focuses on discovering numeric laws. As we saw
earlier, these relations augment the qualitative descriptions, and they may specify the con-
ditions for moving from one state to another, a relation between numeric attributes within
a given state, or a quantitative relation between states. Each of these cases involves storing
a law at a node or link in the taxonomy that summarizes information in the children of that
node or link. IDS uses a single procedure to find all three forms of numeric law. Briefly,
whenever the system adds a new child to an existing node in the hierarchy, it checks to see if
the child obeys the laws currently stored at the parent. If it does not, IDS searches for new
laws that cover the added child and its siblings.

For a given data set, the system conducts a beam search through the space of numeric
terms to find a law that covers these data. More precisely, the search task can be stated as:

* Given: a set of base terms a, b, c,..., along with one designated term (a) from that set;

* Find: a term x = a0 • b"' • c ... such that a linear relation of the form a = mx + n
holds.

IDS searches from simple terms to more complex ones, using correlation analysis (Freund
& Walpole, 1980) to direct the search process. As in BACON, the basic operators involve
defining new terms as products and ratios of existing terms. The system initially examines
correlations between the designated term and observable attributes, uses these to select
promising products and ratios, and then recurses if it cannot find a law with the existing
terms.

This search technique has a semi-incremental flavor. In cases where IDS has rejected an
existing law, there is no need to reconsider the term in that law and those leading to the
law. Thus, it uses the old term as the starting point for the new search, saving considerable
effort over an approach that starts from scratch. However, this method does require one to
store and reprocess all the data that led to the rejected law. As a result, it does not quite
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Table 3
The algorithm for finding numeric laws

Variables: S is the set of base terms.

D is the designated term.
C is the set of current terms.

P and Q are sets of terms.
A is a defined term.

Find-law(D, S, C)

Let A be the term in C that has the highest

correlation with D.
If the correlation between D and A is high enough,

Then call linear regression on D and A

to find the slope and intercept.
Return (A, slope, and intercept).

Else if the maximum search depth is reached,

Then return NIL.
Else let C be Find-best-terms(D, S, C).

Find-law(D, S, C).

Find-best-terms(D. S, C)

Let P be the products of the terms of S and C.
Let Q be the quotients of the terms of S and C.

For each term A in the union of P and Q,
Compute the correlation between D and A.

Return the terms with the N highest correlations.

Parameters:
Width of the beam (memory size).
Threshold of the correlation (accuracy).
Maximum power of terms (law complexity).
Maximum depth of the search tree (when to halt).

fit with our description of IDS as an incremental learning system, though we hope to modify
this in future versions.

Table 3 presents the basic algorithm for finding numeric laws. The top-level function
find-law is given three arguments: the designated term D, the set of base terms S, and a
set of current terms C. If IDS is attempting to revise an existing law, C is the term occurring
in the right-hand side of that law. If the system is searching for a new law, C is the set of
observable terms S.

At each point in the search, IDS defines the products and ratios between the terms in
the set S and those in C, but it retains only those terms having the highest correlations
with the designated term D. These new terms become the current set C, and the function
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find-law is called recursively, with the designated term D and the base terms S remaining
the same. If any term in C has a sufficiently high correlation with D, IDS ends the search and
uses a regression technique to find the slope and intercept of the line relating them. The
system continues along these lines until it finds such a linear relation or until it exceeds the
maximum search depth. If the search fails, IDS assumes that no law covers all the observed
data.

GAS(A)
T(A)= 0.001 P(A) + 20.00

GAS(B) GAS(C) GAS(D)
T(B)=21.0 T(C)=22.0 T(D)=23.0

P(B)=100.0 P(C)=200.O P(D)=300.0

V(B)=24.46 V(C)=12.27 V(D)=8.21

Figure 9. A spurious relation found during discovery of the ideal gas law.

As an example, let us consider how IDS rediscovers the ideal gas law. The system
receives data in the form of states with gaseous objects at different temperatures, pressures,
and volumes. Figure 9 shows the hierarchy after the system has processed three states, with
all instances stored under a common parent node. Given these data, IDS finds a law relating
the temperature and the pressure, since one can express the temperature as a linear function
of the pressure. Now the system observes a fourth instance, which it adds as a child of
Node 1 because it matches the parent completely. 7 However, this new instance violates the
numeric law stored at the parent node, causing IDS to search for a new relation that covers
all four instances.

Since the term P was used in the rejected law, IDS calls the function find-law with {P}
as the current set C, T as the designated term, and {P, V, T} as the base terms S. In other
words, IDS uses the term P as the entry point in the search space, starting by combining
P with the terms in S to form products and ratios such as P, p 2 , P/T, and P/V. Of these

7 Recall that the system does not consider whether instances satisfy numeric laws during the
clustering process.
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new terms, P has a high enough correlation to end the search. Regression produces the
numeric law T= 0.12 - P V + 273: this version is equivalent to the standard form of the law,
P= 8.32(T - 273). Figure 10 shows the hierarchy that emerges after this revision is complete.
As the system processes more instances and stores them under tae parent node, it finds that
they obey this new law, so find-law is not called again.

Four parameters control IDS' search for numeric laws. The size of the set of current terms
C determines the beam width of the search. The level of correlation used as a termination

criterion influences the ac:uracv of the laws and the system's tolerance of noise. Finally,
the maximum power of terms and the maximum depth of the search tree limit the amount

of search. Although we have not undertaken a careful study of this algorithm, preliminary
results suggest that it is efficient and robust

GAS(A)0) T(A)= 0.12 P(A) V(A) + 273.0

GAS(B) GAS(C) GAS(D) GAS(E)

T(B)=20.0 T(C)=22.0 T(D)=23.0 T(E)=24.0

P(B)=I0.O P(C)=200.O P(D)=300.0 P(E)=230.0

V(B)=24.46 V(C)=12.27 V(D)=8.21 V(E)=10.74

Figure 10. A correct version of the ideal gas law, found after rejection of the spurious version
in Figure 9.

As noted in Section 2.2, IDS finds numeric laws similar in form to those produced by

BACON (Langley et al., 1983) and ABACUS (Falkenhainer & Michalski, 1986). Moreover,
they employ similar methods to control their search for useful numeric terms, using simple

correlations to focus attention. However, the systems differ in the details of theii search

control. BACON uses a recency-based scheme, focusing on more recently-defined terms in

preference to older ones. ABACUS creates a "proportionality graph" to dcoc, proinioing

combinations of terms, then uses a modified beam search to find the best combinations. IDS

also carries out a beam search through the space of numeric terms, but this search is not as
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sophisticated as that used in ABACUS. The main novelty of IDS' search scheme is the reuse
of existing terms, which decreases the amount of reprocessing needed when new observations
are made.

3.4 The Process of Prediction

Now that we have discussed IDS at an algorithmic level, let us consider the implications
of the knowledge it acquires. The system inductively constructs a hierarchy of abstract
qualitative states, augmented with qualitative and quantitative laws at different levels of
abstraction. The taxonomy and its associated laws describe the observations that have been
made. Embedded in the hierarchy are qualitative laws, such as the reactive behavior of
acids and alkalis, and numeric laws, such as laws of combining weights, that summarize the
histories given to the system.

However, these data structures also have predictive power. After IDS has observed a
number of qualitative states, it can use its taxonomic hierarchy to predict unobserved states.
In addition, once it has classified a novel state, it can predict the possible successors of that
state (sometimes many steps ahead) and when they will occur. Finally, once the system has
stored cross-state numeric laws, it can use them to predict the values of numeric attributes
in as yet unobserved but predicted states. Moreover, IDS' incremental nature permits it to
makc these prcdictions at any point in the discovery process. In fact, the prediction process
can be viewed as an integrated part of its discovery method.

IDS' three-tiered approach to discovery is also robust in that it can profit from partial
understanding of a domain. In cases where IDS' numeric component cannot discover quan-
titative relations, it may still be able to form qualitative laws and use them for qualitative
prediction. For example, the program can describe the qualitative behavior of reacting sub-
stances even if other factors make the combining weights difficult to determine. Similarly,
in domains where temporal information is not available or not highly predictive, the system
can still find within-state quantitative laws without the need to form qualitative laws. For
instance, IDS needed no qualitative relations to formulate the variant of the ideal gas law
shown in Figure 10. Finally, the system can construct taxonomies that organize qualitative
states, and thus make simple predictions, even when no temporal information is present and
no numeric laws can be found.

4. Discussion

In this section we discuss some general issues concerning our work on IDS. We begin by
describing the status of the system and our ideas for near-term extensions. After this, we
consider some approaches to evaluating IDS, including experiments on both historical and
artificial domains. Finally, we discuss our longer-term plans for more extensive changes to
the system. Although IDS integrates some important aspects of discovery, we think it holds
the potential for supporting much more of the scientific process.
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4.1 The Stat -s of IDS

The three major parts of IDS - the clustering algorithm, the method for finding suc-
cessor links, and the component for numeric discovery - have all been implemented. Initial
experiments show that the system is able to form taxonomies and to find qualitative and
quantitative laws. For instance, given histories of chemical reactions between acids and alka-
lis, IDS has successfully characterized the reactive behavior of these substances. as described
earlier in the chapter. It has also summarized the qualitative behavior of heat exchange.
along with a simple version of Black's law that does not involve specific heat. We have
tested IDS on all the laws that BACON could handle which do not involve inferring intrinsic
properties. The system found Ohm's law, Kepler's third law, and Coulomb's law with no
difficulty.

The system has also successfully found numeric laws witl in states and on transition
conditions. However, we have vet to implement the algorithm for inferring laws that relate
attributes across states, as shown in Figure 4. We envision using a forward propagation
strategy to find these relations. If no law between a state and its immediate successor can
be found. the svstem will look for a numeric relation between the state and the successor of
Lhe successor, continuing this chain until it finds a relation or it reaches a final state. We
will use the numeric discovery method from Table 3 to actually find these laws.

As Langley et al. (1983) have noted, intrinsic properties play an important role in
empirical discovery, occurring in many numeric laws. An intrinsic property is some attribute
of an object or class of objects that remains constant over time; often this attribute is not
directly observable. For example, mass is an intrinsic property associated with particular
objects, whereas density, specific heat, and boiling point are intrinsic properties associated
with classes of objects. We are currently extending IDS to infer intrinsic properties, based
on the parameters found in numeric laws within states, across states, and on transition
conditions.

4.2 Evaluating IDS

Our work on integrated discovery is still in progress, and we have not yet carried out
any systematic evaluation of IDS. We hypothesize that the system can discover a wide range
of empirical laws, provided: (1) the qualitative states can be organized in a disjoint concept
hierarchy; (2) the qualitative laws can be described as deterministic finite-state machines;
and (3) the numeric relations can be stated as products of exponentiated terms. Many
examples from the history of physics and chemistry satisfy these constraints, suggesting that
IDS will do well in such domains. However, we need to more formally specify the space of
laws searched by our algorithms, so we can identify the limits of the framework. We also need
to carry out careful experimental studies of the system's behavior, along the lines proposed
by Kibler and Langley (1988).

In the near future, we plan to evaluate IDS along two dimensions. As with earlier
discovery systems like BACON, ABACUS, and GLAUBER, we will test IDS' ability to rediscover
laws trom the history of science. There are many physical and chemical relations that should
fall within the system's abilities. The laws of chemical reaction that we have used throughout
the chapter are obvious candidates, and we plan to borrow test cases from the earlier work on
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machine discovery. However, we plan to present IDS with both qualitative and quantitative
data for each of these cases. This will simultaneously test the entire system, rather than its
components, in its ability to discover empirical laws of the type actually found by scientists.
It may also provide more plausible historical accounts of these discoveries than earlier Al
systems, although this is not our main goal.

We also plan to test IDS' ability to make predictions about unseen data. As we noted
in Section 3.4. the system should be able to predict the qualitative behavior of unobserved
attributes in a given state, predict the nature of succeeding states, and predict the values of
numeric attributes. As IDS processes more data and its knowledge about the world improves.
the accuracy of these predictions should increase. For this study we will use artificial domains.
which will let us vary factors such as the structure of the taxonomy, the complexity of the
qualitative laws, and the amount of noise in numeric data. We also plan to vary aspects of the
system itself, such as the parameter settings used in the numeric component. Experiments
of this type will provide information about the robustness of IDS' various discoveiy methods,
and suggest ideas for improving them.

4.3 Directions for Future Research

Our long-term plans call for extending IDS in a variety of more challenging directions.
These include improving the clustering method, designing experiments, and constructing
new measuring instruments. We discuss each of these below.

4.3.1 Improving the Clustering Algorithm

In IDS, the discovery of qualitative and numeric laws relies upon the formation of appro-
priate taxonomies, making the clustering process central to the overall system. The current

algorithm has some important limitations, which we hope to remedy in future work.

Our experience suggests that the clustering method is sensitive to instance order, forming
different hierarchies depending on the order in which it encounters qualitative states. This
feature is not so important for experimental data, since these can be presented in a careful
order, with one attribute varied at a time. However, order effects can have a major impact
on the structure of a taxonomy formed from observational data, and thus on the laws the
system finds. Of course, any incremental hill-climbing system will have some sensitivity to
order, but we would like to minimize this effect.

Fisher (1987) has argued that including additional learning operators can reduce the
effect of instance order. Within the context of his COBWEB system, he describes a split
operator that deletes a parent node and elevates its children; he also describes a merg,
operator that is similar to the one used in IDS. These give the effect of backtracking through
the space of taxonomies without the need for memory of previous learning steps. Gennari,
Langley, and Fisher (in press) present empirical evidence that these operators make systems
like COBWEB and IDS less order dependent, and we plan to augment the IDS clustering
algorithm with a split operator. This will also require the system to update its laws as the
structure of the hierarchy changes.

A second drawback of the current system is that it use. a somewhat ad hoc evaluation
function to sort instances and merge nodes. In future versions of IDS, we plan to adapt
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Gluck and Corter's (1985) category utility measure. which has a theoretical grounding in
information theory. Fisher's (1987) COBWEB incorporates this as an evaluation function,
but his system is limited to attribute-value representations. We plan to extend the function
to handle qualitative state descriptions that include multiple objects and structural r,:iations.
This approach assumes a probabilistic representation of knowledge, which should permit IDS
to represent information about the likelihood of various abstractions.

Another issue involves the domain theory of substances that IDS is currently given by
the programmer. This takes the form of a hierarchy, and there is no reason in principle
why the system could not acquire this knowledge on its own, clustering objects with similar
structural features. However, this would require IDS to construct two interleaved taxonomies.
one that organizes qualitative states and another that organizes objects appearing in those
states. This raises issues of updating the state hierarchy when changes occur in the object
hierarchy.

A final problem concerns the assumption that the taxonomy is disjoint, with each ob-
served state being sorted down a single path. This is a clear oversimplification for many
domains, and we plan to alter the IDS clustering algorithm to form nondisjoint hierarchies.
in which each node may have multiple parents. This simplest approach involves modifying
the sorting process at each level of the taxonomy. In addition to considering the placement
of the instance in each sibling, one can also consider placing it in the two best-matched
siblings, the three best, and so forth. One then simply selects the option giving the highest
evaluation score. Only experimentation will tell how well this heuristic approach works. 8

The extension to nondisjoint taxonomies promises another benefit. Figure 11 shows a
partial taxonomy in which the highest-level nodes describe simple qualitative processes, and
whose children summarize states in which these processes occurred together. The extended
IDS should be able to identify such primitive processes from their occurrence in more complex
states, even if they are never observed in isolation. It should then be able to use these
primitive processes in indexing new states that involve previously unseen combinations. For
instance, suppose the system first formed Nodes 1, 2, 3, 4, and 5, and only then encountered
a qualitative state of the form shown in Node 6. This new observation would be sorted
through Nodes I and 3, and Node 6 would be stored as their joint child.

4.3.2 Experimentation

Another central component of science is experimentation, and we also hope to extend
IDS to support this process. Given a current taxonomy and its associated laws, the experi-
mentation component will design a new experiment to be run. This will take the form of an
initial state, along with an (optional) set of actions by some external agent. For example,
in the domain of acids and alkalis the experimenter will propose different initial states by
varying the reactants, their quantities, and the initial conditions. The system will execute
and monitor the experiment itself in a simulated world (Nordhausen & Langley, 1987), or
ask the programmer for the results.

We plan to borrow heavily from recent work in this area by Kulkarni and Simon (in
press), Rajamoney (in press), and Karp (in press). In particular, Kulkarni and Simon's

8 We owe this idea to Doug Fisher, who originally proposed it in the context of his COBWEB

system.
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GAS(A) 2

GEAsS.(B)>0 0 ATEMP.(C) > 0 0 A VOL(D) > 0 0

- TEMP(E) > 0 PRESS.(F) > 0 TEMP.(G) > 0

A PRESS (E) > 0 VOL.(F) > 0 VOL(G) > 0

Figure 11. A nondisjoint taxonomy, with primitive processes as parents of combined pro-
cesses.

KEKADA system includes a heuristic for focusing attention on surprising phenomena. In

the IDS framework, one can instantiate this notion as an unpredicted qualitative state or a
mispredicted numeric attribute. KEKADA attempts to identify the scope of the phenomenon.
generating different initial conditions using a domain theory of substances much like the one
in IDS.

This approach to experimentation will complement the data structures and mechanisms
in the existing IDS system. Some of Kulkarni's heuristics, such as dropping factors that have
no influence, en',rge from IDS' methods for taxonomy and law formation. The incremental
nature of the system will let the experimentation component change strategies after observing
each history. Also, the systematic variation of substances, their relations, and their numeric
attributes will simplify the clustering process, reducing the chances of undesirable order
effects.

The IDS framework also supports the construction of new measuring 'intruments'. Re-
call that the system can store intrinsic properties, such as a substance's specific heat or
boiling point. Given a sequence of abstract states containing such terms, one might place
an as yet unobserved substance in the initial state and let the sequence run its course. Data

observed along the way will let one estimate the specific heat or boiling point of the new
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substance, effectively acting as an instrument for measuring these quantities. IDS can then
use these measurement instrunrents in designing more sophisticated experiments.

4.4 Concluding Remarks

We have presented an integrated approach to empirical discovery that supports taxo-

nomic hierarchies, qualitative relations, and numeric laws. Our ideas are implemented in

IDS. a computational system that uses an incremental hill-climbing strategy to discover em-

pirical laws. The system has rediscovered a number of qualitative and numeric laws from

the history of physics and chemistry, and our initial experience with the system has been
encouraging. However, we hope to carry out more careful experiments in the near future,
using both historical and artificial domains.

The individual components of IDS borrow significantly from earlier work on empirical
discovery. Each component can be improved, as we plan to do in our future work, but we

believe that the overall framework is genuinely new, and that it constitutes an important con-

tribution to our understanding of scientific discovery. Moreover, the basic framework shows

the potential for covering other aspects of the scientific process, including experimentation

and measurement.

Science is a complex enterprise, and it is not surprising that early work on machine

discovery focused on isolated aspects of the overall process. However, the field now has

relatively robust mechanisms for dealing with many components of discovery, and future
progress will depend on understanding the ways in which these components interact. We

think that IDS is an important step in this direction, and we encourage other researchers to

join us in developing integrated frameworks for discovery.
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